Adaptive Estimation of Difficult-to-Measure Process Variables
نویسندگان
چکیده
There exist many problems regarding process control in the process industry since some of the important variables cannot be measured online. This problem can be significantly solved by estimating these difficult-tomeasure process variables. In doing so, the estimator is in fact an appropriate mathematical model of the process which, based on information about easy-to-measure process variables, estimates the current value of the difficultto-measure variable. Since processes are usually time-varying, the precision of the estimation based on the process model which is built on old data is decreasing over time. To avoid estimator accuracy degradation, model parameters should be continuously updated in order to track process behavior. There are a couple of methods available for updating model parameters depending on the type of process model. In this paper, PLSR process model is chosen as the basis of the difficult-to-measure process variable estimator while its parameters are updated in several ways – by the moving window method, recursive NIPALS algorithm, recursive kernel algorithm and Just-in-Time learning algorithm. Properties of these adaptive methods are explored on a simulated example. Additionally, the methods are analyzed in terms of computational load and memory requirements.
منابع مشابه
Hydrograph Estimation based on Various Components of Rainfall Using Adaptive Neuro-Fuzzy Inference System in Kasilian Watershed
Flood hydrograph preparation and estimation are considered a comprehensive information for soil and water managers and planners. While it is not simply possible preparing it for all watersheds. Therfore suitable flood hydrograph estimation and modeling seems to be necessary using available rainfall data. The study area is located in Kasilian representative watershed in Mazandaran province compr...
متن کاملOnline Data Preprocessing in the Adaptive Process Model Building Based on Plant Data
Accurate and efficient online measurements of process variables which give information about final product quality are necessary for process control and optimization. However, these process variables cannot often be measured by a sensor or the measurements are too expensive and/or not reliable enough and therefore are not used. The value of these difficult-to-measure variables is usually determ...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013